
IJSRSET18496 | Received : 01 July 2018 | Accepted : 08 July 2018 | July-August-2018 [4 (9) : 21-27]

© 2018 IJSRSET | Volume 4 | Issue 9 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section : Engineering and Technology

21

An Enhanced Proximity Server Load Balancing Algorithm
S. Sivakumar1, Dr. V. Anuratha2

1Research Scholar, Sree Saraswathi Thyagaraja College, Pollachi, Tamil Nadu, India
2Associate Professor & Head, PG Department of Computer Science, Sree Saraswathi Thyagaraja College,

Pollachi, Tamil Nadu, India

ABSTRACT

With the rapid growth in technology, there is a huge proliferation of data requests in cyberspace. Distributed

system/servers play a crucial role in the management of request in cloud which is distributed among the

various geographical zones. Many of time the system gets over loaded due to few of servers with high number

of request and some of servers being idle. This leads to degradation of performance of over loaded servers and

failure of requests. On these over loaded servers average response time of server increases. So there is a

requirement to design a load balancing algorithm to optimize resource utilization, response time and avoid

overload on any single resource. The management of data in cloud storage requires a special type of file system

known as Distributed File System (DFS), which had functionality of conventional file systems as well as

provide degrees of transparency to the user, and the system such as access transparency, location transparency,

failure transparency, heterogeneity, and replication transparency.

Keywords : Distributed File System, Fault and Load Based Load Balancing Algorithm, Storage Servers.

I. INTRODUCTION

With the fast development in innovation, there is a

tremendous expansion of information asks for in the

internet. Dispersed framework/servers assume a

pivotal part in the administration of demand in cloud

which is appropriated among the different

topographical zones. A considerable lot of time the

framework gets over stacked because of few of servers

with high number of demand and some of servers

being inert. This prompts corruption of execution of

over stacked servers and disappointment of

solicitations. On these over stacked server’s normal

reaction time of server increments. So there is a

necessity to outline a heap adjusting calculation to

improve asset usage, reaction time and keep away

from over-burden on any single asset.

The administration of information in distributed

storage requires an extraordinary sort of document

framework known as Distributed File System (DFS),

which had usefulness of traditional record

frameworks and additionally give degrees of

straightforwardness to the client, and the framework,

for example, get to straightforwardness, area

straightforwardness, disappointment

straightforwardness, heterogeneity, and replication

straightforwardness. DFS gives the virtual

deliberation to all customers that every one of the

information found nearest to him. By and large, DFS

comprises of ace slave engineering in which ace

server keeps up the worldwide registry and all

metadata data of all the slave servers. Though, slave

speaks to a capacity server that stores the information

associated with ace server and other stockpiling

servers also. This stockpiling server handles the great

many customers ask for simultaneously, in DFS. The

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

S. Sivakumar et al. Int J S Res Sci. Engg. Tech. 2018 July-August-2018 ; 4(9) : 21-27

 22

heap appropriation of solicitations on these capacity

servers is uneven and prompt execution debasement

generally. Assets are not abused sufficiently, in light

of the fact that some server gets an excessive number

of solicitations and some stay sit out of gear. In a

dispersed stockpiling framework, load can be either

regarding demands took care of by a server or

capacity limit of that server or both. The fundamental

commitment of this work is to enhance the normal

asset use of framework and evacuating problem areas

and chilly spots in the framework that is the

unbalancing of solicitations over the framework

ought to be evacuated.

II. FAULT AND LOAD AWARE LOAD

BALANCING IN CLOUD STORAGE

In this approach, we have proposed a Fault and Load

based Load adjusting calculation (FLA) that can adjust

a heap of servers powerfully by thinking about its

parallel preparing ability, handling time and its

demand lining limit. Proposed calculation expects to

enhance the execution distributed storage framework

by lessening demand disappointment check, Average

line length, normal use, and aggregate execution time.

2.1 Problem Statement

Distributed file system framework gives a

typical virtual record framework interface to all

clients as in DFS stockpiling servers are appropriated

geologically and due to this heap dispersion of

customer's solicitations to these servers end up

uneven. This issue can be delineated plainly through

Figure-1. Here, we have taken five stockpiling servers

S1, S2, S3, S4 and S5 with their separate administration

rate (S_r) introduce in the framework.

Administration rate of a server connotes the quantity

of solicitations prepared by a server in a given time.

At first at time t=0, we expect that every server gets

an around measure up to measure of solicitations as

appeared in Figure-1(a). We have taken aggregate 8

solicitations to delineate the situation of our concern

explanation. In the second case as appeared in Figure-

1(b) after time t=2, every server procedure the

customer's solicitations according to its

administration rate and server S1 asks for gets over

substantially sooner than different servers and S1

ends up sit out of gear. Server S3 and S5 are completely

stacked and sets aside their opportunity to process all

solicitations. From this situation, we can state that

dispersed record framework does not use every server

proficiently. In certifiable circumstance, these

solicitations are too expansive as contrast with server

benefit rate. So keeping in mind the end goal to build

the framework execution a few solicitations which

are in line should be moved to the sit out of gear

servers or minimum stacked server and finishes the

demand without disappointment. Our point is to keep

away from line like circumstances, using the ability of

every server productively and satisfy greatest demand

without disappointment.

Figure-1 : Problem statement for load balancing (a) at

time t=0, servers receive equal amount of client

requests. (b) at time t=2, scenario of servers after

processing the receive requests.

2.2 Problem Approach

Here, we have proposed a Fault and Load based Load

adjusting calculation (FLA) that can adjust the heap of

servers progressively by thinking about its parallel

preparing ability, handling time and its demand lining

limit. Proposed approach takes four fundamental

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

S. Sivakumar et al. Int J S Res Sci. Engg. Tech. 2018 July-August-2018 ; 4(9) : 21-27

 23

parameters of a server 1) Server request queue size -

buffer space to store the client requests to be handled

by the server. 2) Server service rate (λ) - the number

of CPUs available for processing the client request in

a server. 3) Processing time (S_T) – time takes to

process a request which differs from server to server.

4) Fault rate. Modern servers are equipped with many

features like multiple CPUs, large storage, high I/O

capability etc. We have picked the different CPUs

include as a principle parameter for stack adjusting of

our proposed approach.

Following are the few assumptions that we have

considered for our proposed approach:

▪ It is assumed that all the servers belong to same

organization which can be geographically apart

from each other. So each server maintains the

replica of every server data.

▪ It is also assumed that all servers are strongly

connected with each other through high

bandwidth medium.

▪ Each server maintains global view which contains

the information of its neighbors through master

server.

Figure-2: Organization of distribute storage servers.

Figure-2 demonstrates the general situation of

circulated stockpiling servers. In Figure-2, there could

be N associated servers where N {1,2,3 … .. n-1}, in

the framework. Every server has following properties;

for example, ask for line, number of CPUs, stockpiling

limit. Customers send their solicitations to the

particular server. Ordinarily the approaching

solicitation rate (ρ) builds exponentially to a specific

server. This is a result of the arrangement of

customer's solicitations to that information that is put

away inside the server. On the off chance that, when

a server gets excessively numerous solicitations than

server supports them in their demand line and the

span of demand line gets increments powerfully just

up to its predefined edge confine. Once, the demand

line breaks as far as possible than server is considered

as over-burden server and triggers the heap balancer.

Load balancer orders the minimum stacked server

based on their demand line and preparing limit.

When the minimum stacked server gets grouped than

over-burden server relocate its heap to that server

and equalizations the heap. Various notations are

used in the proposed approach and represented as

follows:

ρ - Current queue size of server.

i - Service rate that is number of request processed

simultaneously on a server.

S_T - Service time is the time taken by server to

process the request.

Q_L Current - Current queue length of server.

Q_L Threshold - Threshold limit of server request

queue.

∆Li - additional load on server i.

Wi - Waiting time for a request at server i.

FTi - Count of request failed.

FRi - Fault rate that is the number of request failed

due to system failure over time t.

Fj - Fitness value of neighbors of server i. (j 

{1,2,3 ….. n-1})

We have considered the real world scenario where

the server request queue size and service rate changes

with respect to time t dynamically and represented as

 and  respectively.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

S. Sivakumar et al. Int J S Res Sci. Engg. Tech. 2018 July-August-2018 ; 4(9) : 21-27

 24

 = (2.1)

t

t















=

Fault rate of a server can be given as:

i
i

FT
FR = (2.2)

time

Storage server is said to be overloaded if:

threshold > Q_L (2.3)

When server i where i  {1,2,3 ….. n-1} is overloaded

then it calculates the amount of extra

load ∆Li on that server which can be calculated as

follow:

i current thresholdL = Q_L - Q_L (2.4) 

The condition when a load balancer module gets

triggered on the overloaded server i is given below:

1, L 0
T(i) =

0, otherwise (2.5)

 



T(i) is a triggering function.

Once, the load balancer module is triggered, server i

find the least loaded or idle server that can

accommodate its load and adequately process the

service requests without failure. For this load balancer

calculates the fitness value Fj that can be calculated

using the following fitness function:

j threshold currentM = Q_L Q_L (2.6)  −

Here, ∆Mj is free request queue of server j. If ∆Mj is

negative, then server j request queue is overloaded

otherwise it is least loaded.

j 1 j 2 j 3 4

j j

1 1
F = . M + . + . + . (2.7)

FR W

   
           

   

Here, α1 and α2 are constants and may vary according

to scenario such that

α1+ α2+ α3+ α4 = 1 (2.8)

For our proposed scenario, we have considered the

value of α1 and α2 is 0.5 it is because both the

parameters play the equal role in load balancing. In

this way, load balancer calculates the fitness value for

each neighbors of server i. and select that server

which has maximum fitness Fj value, i.e. fault rate of

server less than migrating server and migrate the

jM amount of load to server j. Selecting the server

with maximum fitness value in turn decreases the

failure probability of request and completes the

request as soon as possible with least waiting time.

III. FAULT AWARE LOAD BALANCING

ALGORITHM (FLA)

FLA calculations have been intended to adjust the

customer asks for over the servers and appropriate the

heap over the framework consistently. Here, stack

balancer as appeared in Figure-3(a) routinely exams

for the demand line measurement of server and

attempts to limit the issue of over-burdening of any

server with the guide of relocating the additional

demand to other sit out of gear or slightest stacked

and minimum flawed neighboring server in cloud.

Proposed stack adjusting calculation is isolated into

two phases. In first stage rundown of sit without

moving servers is made, and in second stage the

server with most elevated wellness esteem and which

can satisfy the demand with slightest disappointment

likelihood. The calculation checks and ascertains the

wellness esteem for the neighbor server to store them

in a rundown appeared in Figure-3(b). Load balancer

uses this rundown to choose the server that has most

astounding wellness esteem. Load balancer calculates

the waiting time over each server from above list

which can be given as:

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

S. Sivakumar et al. Int J S Res Sci. Engg. Tech. 2018 July-August-2018 ; 4(9) : 21-27

 25

current _ k

k k

k

Q _ L
W = x S_T (3.1)



This equation shows the Wk waiting time of ith request

at server ‘k’.

In second stage load balancer then finds the server

with least waiting time, least fault rate and highest

service rate i.e. highest fitness value from the list. The

proposed algorithm also tries to improve the server

response time by selecting the server having least

CPU utilization. In this way, proposed algorithm

utilizes the idle or underutilized server to increase the

overall performance of the system and reduce

requests failure over the system by reducing the

probability of request failure.

Figure-3(a): FLA Load Balancing algorithm

Step-1: FLA(Server s, Q_Lcurrent, λk, S_Tk,FRi)

 Input: Server s, Queue length Q_Lcurrent,service rate λk,

service time S_Tk, fault rate FRi

Step-2: s server

Step-3: currentQ _ L current queue size

Step-4: k service rate of server k 

Step-5: kS _ T service time of server k

Step-6: iFR fault rate of server k

Step-7: compute Wk

Step-8: if
threshold(Q_ L)  then

 Check server queue status;

 Add request to queue;

 Process_request();

 else

 Server is overloaded;

s Find server(server _ neighbour _ list L)

 Find under loaded server;

 s migrate request

Step-9: Goto Step-7

 Output: Load balances the request

Figure-3(b): Find a neighbor server algorithm.

Step-1: Find_server(server_neighbour_list L)

 Input: server_neighbour_list L

Step-2: For k:=1 to L.size()

Step-3: 1s L.get()

Step-4:
k 1 j 2 3 4

j j

1 1
F M + + +

FR W

   
            

   

Step-5: ktemp _ list t F 

Step-6: End For

Step-7: L2 = Sort(t);

Step-8: 2 2s min(L) 

Step-9: return s2

Output: The server with minimum fitness value.

Figure-4 shows the flow of the algorithm with various

phases of algorithm and interaction among them to

find the fittest server for each request.

IV. RESULTS AND DISCUSSION

Execution examination of proposed FLA calculation is

done utilizing CloudSim test system where we

presently have a huge number of solicitations to be

finished by 12 stockpiling servers. The majority of the

servers work simultaneously with consistent amount

of CPU centers to process the customer asks for

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

S. Sivakumar et al. Int J S Res Sci. Engg. Tech. 2018 July-August-2018 ; 4(9) : 21-27

 26

quickly. Every server has a demand line to cushion

the approaching customer demands, stockpiling

capacity to store the information and satisfy the

customer demands. For the given issue articulation,

where the heap is uneven, it is accepted that half of

capacity servers get customer solicitations and others

stay sit. Our thought process is to similarly

appropriate the gotten customer demands among the

servers to maintain a strategic distance from the

situation of over-burdening. In the reenactment

situation quantities of capacity servers are kept settled

with changing number of solicitations taking care of.

We have additionally contrasted the gotten comes

about and the slightest load adjusting calculation.

Following table delineates the design parameter for

our recreation condition.

No. of

Client

Request

No. of

Servers

No. of

CPU

cores

available

per server

Storage

Capacity

of server

in GB

Server

Queue

length

800 12 7 500 20

1000 12 7 500 20

1200 12 7 500 25

1800 12 7 500 25

2400 12 7 500 25

Table 3.1: Experimental parameters used for

simulation environment

Figure 3.5: Number of request completed

Figure 3.5 shows the number of processed client

requests by server in a given time. Here, Figure 3.5

represents the graph between numbers of sent

requests vs. numbers of completed request whereas

Figure 3.6 represents the graph between no. of sent

requests vs. no. of failed requests for the proposed and

least load algorithms. In least loaded algorithm when

any server get overloaded then load balancer selects

the server of which request queue is least loaded

without considering the CPU parameter.

Figure 3.6: Number of sent requests vs. no. of failed

requests.

Figure 3.7: Overall response time.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

S. Sivakumar et al. Int J S Res Sci. Engg. Tech. 2018 July-August-2018 ; 4(9) : 21-27

 27

Figure 3.8 Average utilization of system.

For the proposed algorithm we have considered the

CPU parameter and from obtained results as shown in

Figure 3.5, Figure 3.6 and Figure 3.7 that the

proposed algorithm perform much better over the

least load algorithm. Figure 3.8 shows that the

proposed FLA algorithm improves the average

utilization of the system drastically over increasing

requests due to improvement in total request

completed. In all set of client requests, proposed

algorithm process more number of client’s request

with better overall response time as shown in Figure

3.7.

V. CONCLUSION

The main achievement of this work is to find the rich

literature and solve the issue of load balancing in fault

aware cloud environment. In distributed file system,

data is dispersed among different storage servers

located geographically far away from each other. To

provide the desired quality of service to the clients,

performance of the distributed file system matters a

lot. Response time is the major parameter that may

affect the performance of the any distributed file

system. Proposed approach claims to reduce the

delayed requests and also reduces the overall system

response time. The first approach also considers the

physical aspects of a server like available number of

CPU cores in a server, request queue size or buffer to

store the incoming client requests. Moreover the

second approach also considers the deadline of client

requests to reduce request failure due to deadline.

Obtained result shows the improvements over

previously worked least loaded algorithm and more

number of client requests are processed by the system

without delay and in case of overloading and failure

the load balance distribute the requests accordingly to

neighbor servers. The results obtained from our

approaches are very competitive with most of the

well known algorithms and justified over the large

collection of requests. Proposed load balancing

algorithm proves to provide better fault tolerance as

compared to existing algorithm with least request

failure, reduced average utilization, average delay and

high request completion count.

VI. REFERENCES

[1]. Abdul rahman and A. Almutairi, "A Cloud Access

Control Architecture for Cloud Computing", 9(2),

2012.

[2]. ACM. Fong, Baoyao Zhou, Hui S.C., Hong G.Y.

and The Anh Do, "Web Content Recommender

System based on Consumer Behavior Modeling",

IEEE Transactions on Consumer Electronics,

57(2), 2011.

[3]. Anuj Sehgal, "Introduction to OpenStack", 6th

International Conference on Autonomous

Infrastructure, Management and Security, 2012.

[4]. Arshad J, Townend P and Jie Xu, "Quantification

of Security for compute Intensive Workloads in

Clouds", 15th International Conference on

Parallel and Cloud Systems, School of

Computation, Pp. 478-486, 2009.

[5]. Artur A, Kondo D and Anderson D P, "Exploiting

Non-Dedicated Resources for Cloud Computing",

IEEE Network Operations and Management

Symposium, PP. 341-348, 2012.

[6]. At&T Cloud Architect, Downloaded from

http://cloudarchitect.att.com/Home.

[7]. Awang, N.F.B, "Trusted Computing -

Opportunities & Risks", 5th International

Conference on Collaborative Computing:

Networking, Applications and Work sharing,

Pp.1-5, 2009.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

S. Sivakumar et al. Int J S Res Sci. Engg. Tech. 2018 July-August-2018 ; 4(9) : 21-27

 28

[8]. Barsoum, A. and HASAN A, "Enabling Dynamic

Data and Indirect Mutual Trust for Cloud

Computing Storage Systems",IEEE Transactions on

Parallel and Cloud Systems, 2012.

[9]. J Basu and V Callaghan, "Towards A trust based

Approach to Security and User Confidence in

pervasive computing Systems", The IEE

International Workshop on Intelligent

Environments, Pp. 223 - 229, 2005.

[10]. Azzedine Boukerche, Yonglin Ren, "A trust-based

security system for ubiquitous and pervasive

computing environments", Commputer

communications, 2008.

